Home
For authors
Submission status

Archive
Archive (English)
Current
      Volume 118
      Volume 117
      Volume 116
      Volume 115
      Volume 114
      Volume 113
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 118 (2023) | ISSUE 4 | PAGE 280
Analog Sommerfeld law in quantum vacuum
Abstract
The activation temperature T in the de Sitter environment is twice larger than the Gibbons-Hawking temperature, related to the cosmological horizon. We consider the activation temperature as the local temperature of the de Sitter vacuum, and construct the local thermodynamics of the de Sitter state. This thermodynamics includes also the gravitational coupling K and the scalar Riemann curvature {\cal R} as the thermodynamically conjugate variables. These variables modify the thermodynamics of the Gibbs-Duhem relation in the de Sitter state. The free energy density is proportional to -T2, which is similar to that in the non-relativistic Fermi liquids and in relativistic matter with equation of state w=1. The local entropy is proportional to the local temperature, while the total entropy inside the cosmological horizon is A/4G, where A is the area of the horizon. This entropy is usually interpreted as the entropy of the cosmological horizon. We also consider the possible application of the de Sitter thermodynamics to the Schwarzschild-de Sitter black hole and to black and white holes with the de Sitter cores.